CI/CD Pipeline Templates | CONFIDENTIAL

CI/CD PIPELINE
TEMPLATES

Azure DevOps • GitHub Actions • Deployment Pipelines • Automation

Version 1.0 | January 2026

Table of Contents

1. CI/CD Overview
Continuous Integration and Continuous Deployment automate the process of validating, testing, and deploying Fabric content across environments.
1.1 Pipeline Stages
	Stage
	Activities
	Trigger

	Build
	Validate, lint, package artifacts
	On commit

	Test
	Run unit tests, data quality checks
	On build success

	Deploy Dev
	Sync to development workspace
	On test success

	Deploy Test
	Sync to test workspace
	Manual/Schedule

	Deploy Prod
	Sync to production workspace
	Manual + Approval

1.2 Fabric Deployment Methods
1. Git sync: Direct workspace-to-branch sync
1. Deployment pipelines: Built-in Fabric feature
1. REST APIs: Programmatic deployment
1. Hybrid: Combination of methods

2. Azure DevOps Pipeline
2.1 YAML Pipeline Template
azure-pipelines.yml
trigger:
 branches:
 include:
 - develop
 - main

pool:
 vmImage: 'ubuntu-latest'

variables:
 - group: fabric-variables

stages:
 - stage: Build
 jobs:
 - job: ValidateContent
 steps:
 - task: UsePythonVersion@0
 inputs:
 versionSpec: '3.10'
 - script: |
 pip install pyspark
 python -m py_compile notebooks/*.py
 displayName: 'Validate Notebooks'
2.2 Deployment Stage
 - stage: DeployDev
 condition: and(succeeded(), eq(variables['Build.SourceBranch'], 'refs/heads/develop'))
 jobs:
 - deployment: DeployToFabric
 environment: 'fabric-dev'
 strategy:
 runOnce:
 deploy:
 steps:
 - task: PowerShell@2
 inputs:
 targetType: 'inline'
 script: |
 # Trigger Git sync via Fabric API
 $token = $(fabric-token)
 $workspaceId = $(dev-workspace-id)
 Invoke-RestMethod -Uri "https://api.fabric.microsoft.com/..."
 displayName: 'Sync to Dev Workspace'

3. GitHub Actions
3.1 Workflow Template
.github/workflows/fabric-deploy.yml
name: Fabric Deployment

on:
 push:
 branches: [develop, main]
 pull_request:
 branches: [develop]

jobs:
 validate:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v3
 - name: Setup Python
 uses: actions/setup-python@v4
 with:
 python-version: '3.10'
 - name: Validate Notebooks
 run: |
 pip install pyspark
 python -m py_compile notebooks/*.py
3.2 Deployment Job
 deploy-dev:
 needs: validate
 if: github.ref == 'refs/heads/develop'
 runs-on: ubuntu-latest
 environment: development
 steps:
 - name: Azure Login
 uses: azure/login@v1
 with:
 creds: ${{ secrets.AZURE_CREDENTIALS }}
 - name: Deploy to Fabric
 run: |
 # Call Fabric REST API
 curl -X POST "https://api.fabric.microsoft.com/..."

4. Fabric Deployment Pipelines
Built-in Fabric feature for promoting content between workspaces.
4.1 Pipeline Configuration
1. Create deployment pipeline in Fabric portal
1. Assign workspaces to stages (Dev, Test, Prod)
1. Configure deployment rules
1. Set parameter rules for environment differences
4.2 Deployment Rules
	Rule Type
	Purpose

	Data source rules
	Change connection strings per environment

	Parameter rules
	Override semantic model parameters

	Lakehouse rules
	Map to environment-specific Lakehouses

4.3 API Automation
Trigger deployment via REST API
POST https://api.fabric.microsoft.com/v1/deploymentPipelines/{pipelineId}/deploy

Body:
{
 "sourceStageOrder": 0,
 "isBackwardDeployment": false,
 "options": {
 "allowCreateArtifact": true,
 "allowOverwriteArtifact": true
 }
}

5. Testing Integration
5.1 Notebook Testing
test_notebooks.py
import pytest
from pyspark.sql import SparkSession

@pytest.fixture(scope='session')
def spark():
 return SparkSession.builder.getOrCreate()

def test_claims_transformation(spark):
 # Test transformation logic
 input_df = spark.createDataFrame([...])
 result = transform_claims(input_df)
 assert result.count() > 0
5.2 Data Quality Checks
data_quality_checks.py
def check_not_null(df, columns):
 for col in columns:
 null_count = df.filter(df[col].isNull()).count()
 assert null_count == 0, f'Null values in {col}'

def check_unique(df, columns):
 total = df.count()
 unique = df.select(columns).distinct().count()
 assert total == unique, 'Duplicate records found'

6. Best Practices
6.1 Pipeline Design
1. Fail fast: Run quick validations first
1. Parallel execution where possible
1. Use caching for dependencies
1. Store secrets in Key Vault/Secrets
1. Tag releases with version numbers
1. Include rollback procedures
6.2 Approval Gates
	Environment
	Approval
	Approvers

	Development
	Automatic
	None

	Test
	Optional
	QA Lead

	Production
	Required
	Manager + Tech Lead

6.3 Monitoring & Alerting
1. Monitor pipeline execution status
1. Alert on failures immediately
1. Track deployment frequency metrics
1. Log all deployments for audit
1. Review failed deployments daily

Appendix: Document Information
	Document Title
	CI/CD Pipeline Templates

	Version
	1.0

	Last Updated
	January 2026

Page of
